Quantum random walks and vanishing of the second Hochschild cohomology

نویسندگان

  • Debashish Goswami
  • Lingaraj Sahu
چکیده

Given a conditionally completely positive map L on a unital ∗-algebra A, we find an interesting connection between the second Hochschild cohomology of A with coefficients in the bimodule EL = Ba(A⊕M) of adjointable maps, where M is the GNS bimodule of L, and the possibility of constructing a quantum random walk (in the sense of [2, 11, 13, 16]) corresponding to L.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hochschild Cohomology versus De Rham Cohomology without Formality Theorems

We exploit the Fedosov-Weinstein-Xu (FWX) resolution proposed in q-alg/9709043 to establish an isomorphism between the ring of Hochschild cohomology of the quantum algebra of functions on a symplectic manifold M and the ring H(M,C((~))) of De Rham cohomology of M with the coefficient field C((~)) without making use of any version of formality theorem. We also show that the Gerstenhaber bracket ...

متن کامل

Gerstenhaber Brackets on Hochschild Cohomology of Twisted Tensor Products

We construct the Gerstenhaber bracket on Hochschild cohomology of a twisted tensor product of algebras, and, as examples, compute Gerstenhaber brackets for some quantum complete intersections arising in work of Buchweitz, Green, Madsen, and Solberg. We prove that a subalgebra of the Hochschild cohomology ring of a twisted tensor product, on which the twisting is trivial, is isomorphic, as a Ger...

متن کامل

Hochschild Cohomology of Group Extensions of Quantum Symmetric Algebras

Abstract. Quantum symmetric algebras (or noncommutative polynomial rings) arise in many places in mathematics. In this article we find the multiplicative structure of their Hochschild cohomology when the coefficients are in an arbitrary bimodule algebra. When this bimodule algebra is a finite group extension (under a diagonal action) of a quantum symmetric algebra, we give explicitly the graded...

متن کامل

Hochschild cohomology group of quantum matrices and the quantum special linear group

We calculate the first Hochschild cohomology group of quantum matrices, the quantum general linear group and the quantum special linear group in the generic case when the deformation parameter is not a root of unity. As a corollary, we obtain information about twisted Hochschild homology of these algebras. 2000 Mathematics subject classification: 16E40, 16W35, 17B37, 17B40, 20G42

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008